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ABSTRACT 

Rigidity theory deals mostly with the topological computation in 

mechanical systems, i.e. it aims at making generic statements. 

Mechanism theory is mainly concerned with the geometrical 

analysis but again also with generic statements. Even more so for 

mobility analysis where one is interested in both the generic 

mobility and that of a particular mechanism. In rigidity theory the 

mathematical foundation is the topology representation using bar-

joint and body-bar graphs, and the corresponding rigidity matrix. In 

this paper novel geometric rules for constructing the body-bar 

rigidity matrix are derived for general planar mechanisms 

comprising revolute and prismatic joints. This allows, for the first 

time, the treatment of general planar mechanisms with the body-

bar approach. The rigidity matrix is also derived for spatial 

mechanisms with spherical joints. The bar-joint rigidity matrix is 

shown to be a special case of body-bar representation. It is shown 

that the rigidity matrices allow for mobility calculation as shown in 

the paper. This paper is aimed at supplying a unified view and as a 

result to enable the mechanisms community to employ the 

theorems and methods used in rigidity theory. An algorithm for 

mobility determination -the pebble game- is discussed. This 

algorithm always finds the correct generic mobility if the 

mechanism can be represented by a body-bar graph 

Keywords Rigidity theory, generic mobility, body-bar, bar-joint, 

pebble game 

INTRODUCTION 

 

One of the unsolved problems in mechanism theory is the 

mobility determination for mechanisms with arbitrary 

geometry and topology. This has always been a topic of 

continuous research. Although nowadays the problem is 

well-understood there is still to this day holistic and 

universal mobility criterion. The problem impeding such a 

universal criterion can be summarized in one word: 

redundancy. This may be due to a special geometry or 

inherent to the topology. Figure 1a) shows the well-known 

geometrically redundant (overconstrained, paradox) Bennett 

mechanism, which has 1 DOF. Any mechanism with the 

same topology but general geometry is immobile. Also the 

planar mechanism in figure 1b) has 1 DOF but this is 

topologically redundant in the sense that its mobility would 

not change if, e.g. bar AC would be removed.  This 

redundancy is preserved for any mechanism with this 

topology regardless of the particular geometry. 
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Figure 1 (a) The 1 DOF overconstrained (geometrically redundant) 

Bennett mechanism; (b) Example of a topologically redundant 1 

DOF mechanism 

 

Historically, mechanism theory has mainly been concerned 

with geometrically overconstrained mechanisms [2,3,7,8, 

11,15,16,28,29,], whereas topological redundancy is 

traditionally a topic of rigidity theory [26,32]. This pending 

division has led to the development of different approaches 

but it turns out that methods from rigidity theory can also be 

successfully employed for the mobility analysis of 

mechanisms. 

The approaches to mobility determination in mechanism 

theory can be roughly divided into three classes: 1) those 

that aim to solve the kinematic relations, 2) those taking into 

account motion characteristics, and 3) topological methods. 

The mobility of a specific mechanism is a geometric 

property that is More precisely the local mobility of a 

mechanism in a given configuration is the local dimension 

of the c-space at this particular configuration [17,18]. The 

explicit resolution of the kinematic relations of a specific 

mechanism is the most natural approach [28,29],[33] ,[34]. 

The difficulty arises from the non-linear nature of the 

problem, that impedes the explicit solution for general 

mechanisms, and one needs to resort to the first-order 

analysis using Jacobians and screw systems. The latter does 

in principle only reveal the first-order instantaneous 

mobility, however, but it is shown in [5, 6] that also the 

finite mobility can be determined by incorporating the 

Jacobian rank condition in the solution method. Even if the 

solution set, i.e. the c-space, cannot be determined 

explicitly, the local mobility can be deduced from a higher-

order approximation. Such higher-order approximations, up 

to any order, are given in terms of Lie brackets of the joint 

screw coordinates [19]. It is known that a mechanism may 

have different local mobilities, i.e. it may attain a different 

finite mobility after a finite motion without disassembling it. 

Such mechanisms are termed kinematotropic [33]. This is 

revealed by a higher order approximation of the c-space. In 

this regard, the definition of higher-order rigidity and 

shakiness has been reported [24]. Another recent class of 

approaches that falls into this category makes use of 

methods from algebraic geometry. The basic idea is to 

determine the dimension (and possibly a local 

approximation of the c-space) of the configuration space by 

means of advanced algorithms from numerical algebraic 

geometry [9,20,1]. The second class makes use of the 

concept of motion groups [7, 8]. Instead of aiming atthe 

solution of the constraints, the dimension of the c-space is 

estimated upon the dimension of the motion spaces 

associated the mechanism's screw system, more precisely 

that of independent kinematic loops [21]. The latter are 

exactly the parameter g in the formula (1) below. Methods 

of the third class are concerned with the kinematic topology, 

i.e. the arrangement of bodies and joints, rather than with the 

particular geometry or motion characteristics. In fact no 

aspects of feasible motions are taken into account, and the 

aim of these methods is to determine the generic mobility, 

i.e. the most likely mobility of a mechanism with a given 

topology when freely choosing its link geometry. The best-

known representative of this class is the Chebyshev-

Kutzbach-Grübler (CKG) formula. Methods encoded in its 

configuration space (c-space).like  the CKG formula are 

attractive since they promise to quickly yield the generic 

mobility without the need to specify geometric parameters, 

and are therefore widely used. At the same time it is well-

know that the CKG formula (and all its variants) fails in 

many situations that have been deemed exceptional. 

However, many such 'exceptional' systems are used in 

practice, which calls for an alternative to the CKG formula. 

Such an alternative is the use of a combinatorial method, 

called the Pebble game algorithm that was developed in the 

context of rigidity theory [23]. This method requires an 

appropriate graph representation of the kinematics, namely 

body-bar and bar-joint graphs, as will be explained in this 

paper. Beside their relevance for the pebble game algorithm 

these graph representations give rise to the so-called rigidity 

matrix -the central object in rigidity theory. Currently the 

rigidity theory approach is limited in that it only allows for 

spherical joints. In this paper the necessary constraints for 

prismatic joints are derived that enable extension of the 

body-bar approach to general planar systems. To the authors' 

knowledge the mechanism analysis using body-bar graphs 

has not been reported so far. 

The paper is organized as follows. In section 2 the topology 

representation used in mechanism theory and the CKG 

formula is recalled. Section 3 gives a brief review of basic 

facts from rigidity theory. The two relevant types of 

representations-body-bar and bar-joint graphs- are discussed 

in section 4 and 5, respectively. For each representation the 

corresponding rigidity matrix is introduced. As a main 

contribution of this paper, the rules for constructing the 

rigidity matrix are derived for planar mechanisms 

comprising revolute, in-line, and prismatic joints, as well as 

distance constraints, and for spatial mechanism comprising 

spherical joints are derived. It is explained how the rigidity 

matrix can be used for mobility determination. In section 6 

the pebble game algorithm is described in some detail. Its 

potential use and limitations are discussed. The paper 

concludes with a summarizing discussion in section 7. 

2 Topology Representation and the CKG-Formula 

The essential object for the use of topological methods is the 

representation of the mechanism topology. In mechanism 

theory and multibody dynamics the kinematic topology of a 

(a) (b)

A B

E

CD
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mechanism is commonly represented by a non-oriented 

graph (V,E),where a vertex Vv  represents a rigid body 

and an edge Ee stands for a joint, connecting exactly two 

bodies, regardless of the DOF of the joint (figure 1). This 

representation of the mechanism kinematics accounts for the 

arrangement of joints and bodies. It does, however, not 

explicitly take into account the number of constraints 

imposed by the individual joints. These can indirectly be 

indicated by assigning a weight to each edge. This gives rise 

to well-known CKG formula 

 



J

i
i BJgf

1

1                                                (1) 

Where J  is the number of  joints, B is the number of bodies, 

and if is the DOF of joint i (the weight of edge i). The 

parameter g is adjusted to the ‘type’ of the mechanism, or 

conversely different types of kinematic loops can be 

realized. This 'type' of mechanism pertains essentially to the 

motion group associated with a mechanism or to a kinematic 

loop, i.e. sub groups of the rigid body motion group SE(3). 

Hence possible values of g are1,2,3,4, and 6. Common 

choices for this parameter are g=6 for spatial mechanisms, 

and g=3 for planar and spherical mechanisms.This formula 

has appeared in various forms, and was amended in order to 

capture redundancies. An exhaustive overview and historical 

perspectives were reported in [4]. 

 

Figure 2 The topological graph of a parallel manipulator. Vertices 

iv represent bodies and edges ie represent joints 

If higher DOF joints are replaced by a sequence of 1-DOF 

joints, then the CKG formula can be rewritten as 

 gn                                                                  (2) 

where n is the number of 1-DOF joints, and 1 BJ is 

the number of fundamental loops of  (Euler’s number, 

cyclomatic number). 

The mobility determination of mechanisms that are not 

geometrically over-constrained boils down to identifying 

topologically redundant subsystems. It turns out that the 

above topology representation is not adequate for this 

purpose. On the other hand there are now combinatorial 

methods from rigidity theory for identifying topological 

redundancy and redundant rigid substructures (identification 

of topological self-stress). The mathematical foundation is 

Laman’s theorem [12] and the algorithmic tool is the pebble 

game algorithm [10]. They make use of two further concepts 

for representing the mechanism kinematics, namely the 

body-bar and bar-joint graphs. 

The CKG formula only uses topological information but no 

information about the specific geometry. Albeit being 

simple, the CKG-formula fails for special geometries and 

topologies since it neither respects the geometry nor the 

topological redundancies. Mechanisms exhibiting either 

characteristic are collectively called over-constrained 

(redundantly constrained).It was shown in [17]that the 

CKG-formula yields generically the correct mobility 

provided that the mechanism is not topologically redundant. 

The attribute generic refers to mechanisms with general 

geometry, i.e. not subject to additional conditions. In other 

words a mechanism is generic if it is not geometrically over-

constrained. Now, the question arises whether there is a 

method to deduce the correct generic mobility from the 

topological information even for topologically redundant 

systems. The preliminary answer is: Yes, if the mechanism 

can be represented by a body-bar graph. 

The reason why the topological graph (which is the 

foundation for the CKG formula) is not adequate for 

combinatorial mobility determination is that it lags the 

information about the number of constraints imposed by the 

individual joints. Now, alternatively the body-bar graph, for 

instance, does account for the joint constraints. The 

difference is that in the body-bar graph each edge (bar) 

stands for exactly one constraint as discussed below. The 

importance of this representation is that it does allow to treat 

topologically redundant systems, unlike the CKG formula. 

The core aim of this paper is to show the potential of using 

representations and methods from rigidity theory for 

mobility computations. In the following sections these 

approaches are discussed and are shown to be related to each 

other, and their limitations are outlined. Emphasize is put on 

the involved rigidity matrices and their kinematic 

background. In particular the constraint formulation for 

spherical joints is recalled, and a novel formulation for 

prismatic joints is presented. 

3. Review of Rigidity Theory Approaches to 
Mechanism Analysis 

Rigidity theory is a combinatorial theory that encompasses 

topological theorems and methods that are used in order to 

prove whether the graphs, or the corresponding physical 

systems represented by the graphs, are rigid or mobile. Note, 

most of the works in rigidity theory deal with topological 

considerations, i.e., when a graph is concluded to be rigid it 

signifies that it is generically rigid without giving 

consideration to any specific geometry.  
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The main work initiated in 1970, by the work of Laman 

[Lam] where he proved the necessary and sufficient 

condition for a graph in 2D to be rigid, commonly known as 

the Laman theorem: 

Theorem 1Let G be a graph with v(G) vertices and e(G) 

edges, such that e(G)=2*v(G)-3. G is rigid in 2Diff for any 

sub-graph of G’  

  e(G’)≤2*v(G’) – 3.                    (3) 

As an example, the graph in Figure 2a is not rigid since the 

subgraph with the vertices {B,C,D,E} has six edges and four 

vertices, thus: 6>2*4-3, contradicting equation 2. 

 

 

 

 

 

Figure 2 (a) This graph is not rigid thus it does not satisfy Laman’s 

theorem. b) A rigid graph.  

 

 

The main downfall of this theorem is that it requires an 

exponential number of checks for all the possible sub-

graphs, thus it is impractical to computerize it. Ever since 

the publication of Laman, many well-known mathematicians 

have toiled to find a polynomial run-time algorithm for 

checking the rigidity of graphs, and many equivalent 

theorems for Laman’s theorem were developed which 

theoretically require only a polynomial number of checks, 

but were very complicated. Among them, is the work 

reported in 1982 in which for multiplying any edge there is a 

need to find two disjoint spanning trees [41].  

The work in rigidity theory strongly relates to mechanical 

engineering since they talk about the topological DOF of the 

graphs. Note, the graphs correspond to physical systems that 

are floating, i.e. ungrounded/not pinned. In the light of 

rigidity theory, kinematic chains with revolute joints can be 

termed floating linkages, and mechanisms can be termed 

pinned linkages. Thus, checking whether a mechanism has 

one topological DOF can be referred to in rigidity theory as 

checking whether the corresponding pinned graph after 

grounding the drivers is rigid.  

In 1997, a very efficient algorithm for checking a variant of 

Laman’s theorem was developed and implemented in 

computer software, called the pebble game [01], explained 

in detail later in section 5. Succinctly, the pebble game 

verifies whether a graph satisfies Laman’s condition in a 

polynomial time. Moreover, pebble game can determine the 

topological DOF of any graph, determine the DOF of every 

vertex, indicate the redundant regions and decompose the 

graph into Assur Graphs [22]. 

Albeit the success in 2D, the situation is 3D is much more 

complicated. Laman’s theorem in 3D is as follows.: 

Theorem 2Let G be a graph with v(G) vertices and e(G) 

edges, such that e(G)=3*v(G)-6. G is rigid in 3D if for any 

sub-graph of G’  

  e(G’)≤3*v(G’) –6                      (4) 

This theorem was found to be insufficient for 3D graphs. 

For example, the double banana [34], which although 

satisfies the 3D Laman’s theorem is not rigid  

Alternatively to the combinatorial pebble game algorithm 

the body-bar and bar-joint representations also allow for 

mobility determination using the so-called rigidity matrix. 

This is explained in section 4 and 5, respectively.  

 

 

 

4 The Body-Bar Approach to Mechanism Analysis 

4.1 The Body-Bar Graph 

The body-bar approach uses a graph representation where 

vertices represent bodies and an edge represents exactly one 

scalar constraint restraining the relative motion of the two 

bodies it is connected to. E.g. a revolute joint in 2D is 

represented by two constraints (edges), a spherical joint in 

3D by three, hinges by five and so forth. Consider the planar 

mechanism in figure 3a. Its body-bar graph is shown in 

figure 3b). It is common practice to visualize the nodes, i.e. 

the bodies, by polygons. Body 4 is connected to the ground 

by a revolute joint, denoted J4. The latter imposes two 

translation constraints (in the plane) to body 4. This is 

reflected in the body-bar graph by two edges between the 

ground and body 4 denotedJ4x and J4y. The higher pair C, 

on the other hand, only imposes one constraint represented 

by the edge C in figure 3b. Further imposed motions can be 

easily included by an additional edge such as the motion 

imposed by the driver link in figure 3. 

 

Figure 3The body-bar graph (b) corresponding to a mechanism (a) 

 

The body-bar graph of spatial mechanisms is similar, and 

comprises for example five and three edges for each hinge 

and spherical pair, respectively. 
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In summary, the body-bar graph is an abstract representation 

of the constraints imposed to the bodies of a mechanism. 

This formal representation of the constraint equations, and 

hence of the kinematic topology, is suited for algorithmic 

treatment of kinematics. Even more, since each edge 

corresponds to exactly one scalar constraint, it can be used 

to determine the generic, i.e. topological, mobility of 

mechanisms. 

There is extensive ongoing research on this type of graphs 

and novel applications [34]. The advantage of using body-

bar graphs is that it is mathematically proved [22] that the 

generic DOF can be calculated for any spatial system, where 

the CKG-formula fails. In other words, when a mechanism 

is presented by body-bar graph there exist combinatorial 

algorithms, such as the pebble game, that find the correct 

mobility. Note, for bar and joint graphs there exist 

algorithms that find the correct generic mobility only for 2D. 

 

 

4.2 The Corresponding Constraints 

 

 

 

 

 

 

 

Figure 3The main property of body-bar mechanisms. 

In the following a few results from planar projective 

geometry are needed that have been summarized in the 

appendix. Throughout the paper capital letters denote 

homogeneous coordinates. Denote with C  the homogenous 

coordinates of the instantaneous center of motion, and 

introduce CZ  . 

The main property underlying the body-bar analysis is the 

following: 

Property 1: The length of the projection of the velocity of 

any point P, onto a line(not at infinity) with coordinates l , 

denoted by 
lPv |
, is equal to the scalar product of Z, with the 

line coordinate vector: lZv
lP | . 

To prove the above statement consider some line with 

coordinates l that passes through a point P of the body.If el  

is the unit vector along the line, then the magnitude of the 

projection of the velocity of point P on the line is: 

    (5)

 

It may be noted that this projection does not depend 

explicitly on the point P, but only on the line land the center 

of motion of the body, represented by Z. Thus, for any point 

of the rigid body that lies on the line l the projection of the 

velocity on this line is the same as shown in figure 3 where 

the two points P and Q have the same projection.  This is a 

well-known property of the rigid body [32]. 

Property 1 can now be applied to the analysis of body-bar 

graphs. As mentioned above, each body is constrained by 

lower or higher pairs represented by several edges in the 

body-bar graph, each corresponding to one constraint. The 

basic constraints are the following: 

a. Driver Constraints: The driver applies a given linear 

velocity at the joint where the driver is connected to the 

body. Let A be the joint, vA its linear velocity and 
xAl the 

line that passes through point A and parallel to the x-

coordinate axis. Thus, according to property 1 the projection 

of the velocity of point A on line 
xAl , the constrained, is: 

 ACAA yy)iA(ZlZv
xx

                    (6) 

The same applies to the y-component: 

 CAAA xxjAZlZv
yy

 )(                         (7) 

Where i and j denote the homogenous coordinates of the x 

and y axis, respectively. 

b. The Constraint of a Revolute Joint connecting two 

Bodies: Let BI and BII be two bodies connected by are 

volute jointat point A. Since the velocities of the two bodies 

at point A are equal, their projections on the two lines 
xAl

and 
yAl through A should be the same, which yields the 

following equations

  

  0

0





y

x

AIII

AIII

lZZ

lZZ

                                                             

(8) 

c. The Constraints of a Bar (Binary Link) connecting two 

Bodies: Let BI and BII be two bodies connected by a bar 

along the line l that is linked to Body BI and BII via revolute 

joint at points A and B, respectively. The bar itself is not 

treaded as rigid body of the system. Since bar is rigid the 

projections of its two end joint velocities, Av  and Bv on 

the line l must be identical, i.e, 

  lZZ IIIBA  1|1|0 vv
                                         (9)

 

P
Q

y

x

Constraint l = -sin(α)
cos(α)
-d

lZ
ll |P|Q · vv

Pv

lZ
l|P ·v

Z= ω
Yc

Xc

1
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Since the line along the bar is defined by the points A and B 

it can be expressed with the join operation BAl 1
. Hence 

the constraint is  

    0 ABZBAZ III                                           (10) 

d. The Constraint for an Inline Joint 

An inline joint at point A restricts the relative motion of two 

bodies BI and BII so that they can only translate relative to 

each other along a line l but can freely rotate. It hence 

imposes one translation constraint. This models a notch for 

instance. Let le be a unit vector along the line. The joint 

restrains the relative translation of BI and BII perpendicular 

to le .Denote with 
le  a unit vector orthogonal to le . 

Formulating the corresponding constraint requires an 

expression of the velocity of a point on a body along 
le . 

The magnitude of the component of the velocity of a point A 

at a body perpendicular to the line l  is 

(11)                                      

where
l  denotes the point at infinity approached along l .  

The joint constraint is that the projection (11) of the 

velocities I
Av  and II

Av of body BI and BII, respectively, are 

equal, i.e., 

    02121  
 lZZlAl

II
Al

I
A evev                   

(12) 

Note that the dot products of the homogenous coordinate 

vectors A  and 
21,ZZ with l is nothing but the scalar 

product of the position vectors with le . In (12) any point on 

the joint axis, i.e. on the line l , can be used. In particular the 

perpendicular of the origin to the line, or the origin itself, 

can be used as point A . This yields the final form of the 

constraints 

  021  lZZ                                                               
(13) 

e. The Constraints for a Prismatic (translational) Joint: 

A prismatic joint restricts the motion of two bodies to pure 

translation along its axis. It can be derived from the inline-

joint by adding the rotation constraint. Then the two 

constraints imposed by the joint are 

 
0

0

21

21



 



lZZ

                                                               

(14) 

where
1 and 

2  is the respective angular velocity of body 

BI and BII. 

With these joint primitives it is possible to model a large 

number of mechanisms since all lower pairs, except the 

screw joints, can be represented as succession of revolute 

and prismatic joints. 

4.3 The Body-Bar Rigidity Matrix for Mechanisms 
and Mobility  

The overall set of velocity constraints can be summarized in 

the following system of linear equations in terms of 

NiZi ,1,   


























NZ

Z

R
v



1
0

                                                                (15) 

where v summarizes the driver velocities. The coefficient 

matrix R is the so-called body-bar rigidity matrix. 

In the rigidity matrix R the rows correspond to the 

constraints (bars, driver, turning pairs) and the N columns to 

the bodies. For each body there are three columns 

corresponding to  iciiciii yxZ  ,, .Apparently the 

motion of the system is uniquely determined by the driver 

velocities v iff R has full rank. In particular if the left-hand 

side of (15) is zero, the system is instantaneously rigid, 

hence the name of R. 

Notice that the rigidity matrix reveals whether or not the 

overall system consisting of the mechanism and the driver 

constraints is instantaneously determined. Consequently if 

only the geometric constraints are taken into account for 

constructing the rigidity matrix (i.e. the drivers are 

considered passive), the rank of the rigidity matrix does 

indeed determine the mobility as RN rank3  . It is 

instructive to reflect on this fact since it clearly shows the 

relation to the rigidity theory. If the rigidity matrix is 

determined symbolically, then its rank depends on the 

geometric parameters, and one may deduce the generic 

mobility. If it is evaluated for particular geometric 

parameters, one gets the instantaneous mobility of that 

particular mechanism. 

Figure 4 shows exemplary entries in the rigidity matrix for 

the constraints discussed above. 

As an example consider the rigidity matrix of the 

Stephenson type II mechanism in Figure 5 (note that the 

crank 0 is not regarded as a member of the mechanism). 

In this example three bodies are identified: the ground 0 and 

the triangles I and II. The centers of motion of the triangles 

are ZI and ZII, respectively. The equations are derived by 

applying the matrix construction rules and appear in Figure 

5.b. 
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The velocity of the point A is given through the length of 

link 0 (the driver) and its angular velocity. The lines 
xFl , 

yFl , 
xAl , 

yAl  are the lines passing through the points F and 

A and parallel to the x- and y-axis,  respectively. For 

example, 

              (16)
 

The rigidity matrix is obtained from the six equations given 

in Figure 5.b, written in the matrix-vector form as appears in 

Figure 5.c. 

Generically the rigidity matrix has full rank 5 so that the 

mechanism is instantaneously controlled by the rotation of 

the driver link. This result is obtained because the driver 

constraint is included in the body-bar graph. If the driver 

link is considered as bar constraint, i.e. passive, the rigidity 

matrix would have only 5 rows and yield the generic DOF 1. 

 

 

 

 

Figure 4 Representing the different constraints in the body-bar 

rigidity matrix. a) The driver. b) Bar connecting two bodies. c) A 

revolute joint connecting two bodies. d) A pinned joint connecting 

the body to the ground. e) Body-bar rigidity matrix. 

 

Figure 5 The body-bar Stephenson type II, its governing equations 

and its body-bar rigidity matrix. a) Stephenson type II. b) The 

governing equations. c) The corresponding body-bar rigidity 

matrix. 

 

4.4  The spatial body-bar rigidity matrix for mechanisms  

In this section we introduce the rule for constructing the 

body-bar matrix in 3D. Due to space limitations we only 

present the constraints for a bar constraint. 

Suppose we have two bodies, I and II and a constraint 

between them presented by a bar connected to the bodies at 

points A and B, respectively.  This constraint will be written 

according to property 2. 

Property 2:For the constraint between the two bodies there 

will be at most six entries written according to the following 

equation:  

    0ABZBAZ III                                        
(17) 

Proof of property 2: A hyperplane, denoted by H, in 

dimension d is a geometrical entity with dimension d-1 

[32].Thus, in 2D it is a line while in 3D it is a plane. Its 

homogeneous coordinates are defined so, that the scalar 

product of the hyperplane with the point P is its distance 

from the hyperplane: 
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n is the normal to the hyperplane. If P is an origin, than 

H∙P=-d, so d is simply the distance from the hyperplane to 

the origin. 

One of the unique properties of a hyperplane is that when 

we apply to it the join operation of a point it is equal as 

performing a scalar product, as follows: 

PHPH                                                             (19) 

The join of two points is a weighted line, directed from the 

first point to the second, where the weight is the distance 

between the points and l is the unit vector from P to Q, as 

follows: 

lQP PQ
                                                         

(20) 

Now, we can define motion of a point through hyperplane, 

as follows:  
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(21) 

Where vP is the velocity of the point P and nP is its direction 

unit. As can be seen from equation 16, the motion is a 

weighted hyperplane with a normal identical to the direction 

of the velocity.  

As known in the literature [32]the motion of a point on a 

body is defined as the join of the center of motion, Z, and 

the point P as follows:  

 PMPZ                                                              
(22) 

In 2D the center of motion is a weighted point, which is an 

instantaneous center of rotation, and in 3D the center of 

motion is the weighted instantaneous screw axis. 

The join of the motion of point P and a point Q can be 

defined:  

      lZQPZQPZQPM  PQ
        

(23) 

Where |Q-P| is the distance between the points P and Q. 

Since the M(P) is a weighted hyperplane thus, according to 

equation (14),  the join operation with point Q can be 

performed by a scalar product as follows:  

   PQvvPQv  PPPQPM                      
 (24) 

Where the last expression is the projection of the velocity of 

point P on the line from P to Q with the weight equals to the 

distance from P to Q. Thus, after comparing the last two 

equations it can be derived that the join between the center 

of motion with some line results in the projection of the 

velocity of the points on this line, as follows: 

lPvlZ |                                                                   (25) 

This is constant along this line.Now, let l be the line that 

defines the bar connecting between the two bodies, i.e., 

BAl   we have: 

lZlZv IIIl|P 
                                                        

(26) 

   BAZBAZ III                                            (27) 

    0ABZBAZ III                                      
(28) 

Equation (28) defines the construction rule for writing the 

body-bar rigidity matrix for any mechanism. Note, equation 

(10) is a special case of equation (28) as is derived as 

follows: a line is a hyperplane in 2D thus the joint between 

Z and the line in equation (26) can be written as an inner 

product, explained in equation (14), yielding equation (10). 

For spatial mechanisms the center of motion is a line, 

termed ISA (instantaneous screw axis) defined as follows: 
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                                                      (29)

 

Where t is the direction of the ISA, m is the moment of the 

ISA, is the instantaneous angular velocity around the ISA 

and v is the instantaneous translational velocity along the 

ISA [35] 

Example: Body-Bar Rigidity Matrix of Stewart Platform 

In the light of rigidity body-bar concept, Stewart platform 

consists of two bodies: the ground and the platform and six 

bars, this time can change their lengths, connecting between 

the two bodies. In this example the platform is designated by 

A and the ground by B and bar i is defined by two points 

where it is connected to the bodies, Ai and Bi. The 

governing equation for calculating the velocity of each bar is 

[32]:  
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From the latter equation it is possible to derive the 

projection of each point of body A, let it be Ai, on the line of 

the bar connected to it, li,  as follows: 
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where vi is the given velocity of bar i. Based on equation 

(31) it is possible to construct the body-bar rigidity matrix 

corresponding to the Stewart Platform appearing in figure 7. 

 
Figure 7 The schematic description of the Stewart Platform. 

 

According to equation (31), the corresponding body-bar of 

the Steart Platform can be constructed as follows: 

 

 

 

 

 

 

 

In the following section we introduce a special case of body-

bar approach termed bar-joint approach.  

5The Bar-Joint Approach to Mechanism Analysis 

A bar-joint representation of a mechanism consists of binary 

links (the edges) that are connected by spherical joints (the 

vertices) in 3D and revolute joints in 2D, respectively. In so 

far a bar-joint graph resembles the physical system, but it 

must be noticed the vertices embody as many joints as 

necessary to link the attached bodies. A vertex connecting k 

edges (bodies) represents k-1 joints.  

In this paper we show that this representation of 

mechanisms can formally be derived from the body-bar 

mechanisms by shrinking the bodies into joints. These 

mechanisms can be also viewed as mechanisms consisting 

of point masses that have only a pure translational motion. 

Although there exist methods and algorithms for checking 

the topological/generic mobility of body-bar mechanisms in 

2D and 3D, for 3D bar-joint mechanisms there are no such 

algorithms. Furthermore, there are some 3D bar-joint 

mechanisms for which all the known algorithms provide 

with a wrong answer of their topologic/generic mobility. 

This strange phenomenon is explained more in details in the 

conclusion. 

5.1 Deriving the bar-joint rigidity matrix from the 
body-bar rigidity matrix 

Let us start from the equations developed for body-bar 

mechanisms (section 2.1.3), only this time the bodies are 

shrunk to joints, i.e., very small bodies with pure translation 

motion. In this case the center of motions of these small 

bodies is at infinity and the angular velocity is equal to zero, 

i.e., the three DOF of bodies are reduced to the two DOF of 

the joints. 

Let us start from equation (4) but this time the third 

component of the center of motion is zero since it is at 

infinity, as shown in (12). 

        (32)

 

From equation (32) it follows that the center of motion of 

the joints is : 
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(33) 

Let us apply equation (10) to a binary link whose end joints 

are A and B whose center of motion is defined by equation 

(33), resulting with the following  equation: 

      (34) 

5.2 Rule for constructing the bar-joint rigidity 
matrix for mechanisms 

Equation (34) defines the method to construct the rigidity 

matrix of any bar-joint mechanism.  Each row corresponds 

to a binary link and two columns to a joint, each for the 

velocity in the x and y coordinate.  

For the sake of clarity, we apply the rule appearing in 

equation (34) and construct the bar-joint rigidity matrix of 

the mechanism Stephenson type II, as appears in Figure 8.  
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  (b) 
Figure 8 The bar-joint Stephenson II (a) and its corresponding bar-

joint rigidity matrix. 

 

 

6. Computing the Generic Mobility with a 
combinatorial Algorithm – The Pebble Game 

The problem of determining the correct generic mobility is 

well known in the literature, both in structures and in 

mechanisms. For example, in Figure there are two pinned 

bar – joints graphs, both having the same number of vertices 

and edges. However, among them there is a disparity which 

is as follows: the graph in Figure 9a has one DOF and has a 

finite motion, while the one in Figure 9b is a rigid graph, 

immobile.  

 

 

Figure 9 Example of two pinned graphs for which CKG equation 

results in the same DOF. (a) Mechanism with redundant region; (b) 

Rigid truss.  

 

 

The problem of determining the generic mobility for 2D bar-

joint was solved only in 1997, by two physicists: Jacobs and 

Hendrickson. Their main aim was to develop an algorithm 

for checking whether a graph is rigid, i.e., whether it has 

zero generic mobility. As we show here, this algorithm was 

found to be applicable other important problems related to 

generic mobility. This algorithm is called the pebble game 

[10] and is described in the following sections. 

Remark: Although body-bar and bar-joint graphs are 

equivalent representations of the mechanism topology there 

is an important difference for the application of the pebble 

game. It is was proved [13] that the pebble game always 

finds the correct generic mobility for body-bar graphs, but it 

may fail for bar-joint graphs. For simplicity, in this section 

the pebble game is described for the bar-joint graph. The 

algorithm proceeds similarly for the body-bar graph. 

6.1 The combinatorial algorithms for computing 
the generic mobility – Pebble game 

Let G=(V,E) be a bar and joint graph. Each vertex is given 

two pebbles, corresponding to the two degrees of freedom 

that a point in a planar system has. A vertex can use its 

pebbles to cover any two edges which are incident to that 

vertex.  

When an edge is directed, one constraint is added; therefore 

one degree of freedom is removed from the total system 

(one pebble). Every ungrounded system, i.e. a floating 

system, must contain at least 3 DOFs (of a body in plane), 

therefore three pebbles are always present in the graph. To 

direct an edge four edges should be on its end vertices, two 

on each vertex as shown in figure 10. The edge is being 

directed by moving one pebble to the edge, defining a 

constraint between its two end vertices.  

 

Figure 10 Example of assigning a pebble to an edge (constraint) 

(a) Two pebbles should be at the end vertices. (b) The constraint 

was added and the edge is directed. 

Once four pebbles are located at the end vertices of the 

desired edge, we are guaranteed that these points are 

independent in the plane, and that adding an edge between 

them will not result in an over constrained system. The fact 

that four pebbles are necessary is used in the algorithm by 

quadrupling the edge under test before it is being directed. 

In case the independence test is successful, the edge can 

then be directed, i.e., a constraint is added between these 

points, and one degree of freedom is reduced from the total 

system (one pebble is used to mark the edge). In fact, this 

operation defines a constant distance between the end 

vertices, and this constraint equals to one DOF. 
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The mains steps of the algorithms: 

1. Arbitrarily pick a starting vertex. 

2. There are two types of moves possible: 

2.1 Direct an edge move: If i and j are vertices with two 

pebbles on each, i.e., the vertices are independent and 

there is no constraint between them, then assign one 

pebble from one of the end vertices to the edge, 

suppose from vertex i (wlog). The edge (i,j) is now 

directed from i to j, i.e., <i,j>.  

In case two pebbles cannot be found at the ends of that 

constraint, after an exhaustive search, this edge is 

marked as a redundant. 

2.2 Pebble slide move: If there is a constraint between 

vertex i and vertex j, then there exists a directed edge 

<i,j>and there must be a pebble on j. What we do is 

reverse the direction of the edge so that it is now 

directed from j to i and move the pebble from j to i. 

 

The algorithm ends when all the edges have been 

processed (directed or not). 

For the sake of clarity, let us see how the Pebble game 

concludes that the floating Bar-Joint graph – the triangle 

(figure 11  

Figure 11a) is rigid. First, two pebbles are assigned to each 

vertex, Figure 11b. Edge (a,b) can be directed since there are 

two pebbles in each of its end vertices as shown in Figure 

11.c, the same is true for edge (b,c), Figure 11.d. In order to 

direct the edge (a,c), two pebbles should be moved to its end 

vertices. Therefore a pebble from vertex b moves to vertex a 

and the direction of (a,b) is swapped, Figure 11.e. Now (a,c) 

is directed, Figure 11.f. Now that all edges have been 

processed, all edges are directed and there are 3 free pebbles 

on the graph (3 DOF of a rigid body), and in fact, the graph 

is indeed rigid, without over-constraints.  

 

 

Figure 11 Example of applying the Pebble game for validating the 

rigidity of a triangle. (a) undirected graph G (b) each vertex is 

given 2 pebbles (c) ,(d), (f) direct an edge move (e) pebble slide 

move. Minimally rigid graph, three free pebbles left. 

 

6.2 Determining all the redundant links via the 
pebble game 

One of the benefits of the pebble game algorithm is that it 

allows to determine the regions where there is a topological 

redundancy. In this case, redundant edges will fail to be 

directed since an exhaustive search will not succeed to move 

two pebbles to each end vertex of the edge. 

We will explain how the Pebble game finds the redundant 

region through an example appearing in figure 12. At first 

all the vertices are given two pebbles, figure 12a. After 

several pebble moves, all edges except (B,D) have been 

directed and only three pebbles are left so there is no 

possibility to assign a pebble to edge (B,D) as explained 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Example of revealing a topological redundancy region 

and generic mobility of joints by the pebble game.(a) Initial state 

for pebble game. (b) Directing all the possible edges. (c) The 

redundant region, colored in blue. d) The joints with one 

topological DOF are colored in green. 

6.3 Determining the topological DOF of joints by 
the Pebble game 

After pebble game assigns maximum inner edges the free 

pebbles that are left are moved to the ground, each ground 

edge is assigned same as before with one pebble and is 
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directed towards the ground. The free pebbles left in the 

graph after directing the ground edges define the topological 

DOF of each joint, as follows: for each joint move the 

maximum number of free pebbles as possible. The 

maximum number of free pebbles that can be moved to a 

joint determines its topological DOF. As an example, in 

Figure 12.d it is possible to move to each joint a maximum 

of one pebble, in the figure located next to joint D, thus all 

the joints in this example have one topological DOF.  

A case where there are no pebbles left can be seen in figure 

13.b, thus all the joints are topologically immobile, i.e., the 

structure is rigid.  

The redundant region is found as follows: Let v be the 

vertex whose maximum pebbles that can be moved to is less 

than two pebbles. As an example, vertex B in figure 12.c is 

such a vertex.  All the vertices to which there is a directed 

path, a sequence of directed edges, from vertex B are 

marked, in figure 12 they are colored with blue. All the 

edges whose end vertices are colored with blue are the 

redundant edges, i.e., removing each one of them does not 

affect the generic mobility of the graph.A graph with no 

redundant edges is given in figure 13a, and the Pebble 

algorithm results with this conclusion since all the edges are 

directed as shown in Figure 13b

 

Figure 2 Example of proving the rigidity of a structure. 

(a) Initial state for pebble game. (b) All the edges are directed.   

7. Summary 

In this paper the body-bar and bar-joint representation of 

mechanism kinematics has been revisited. Each one of these 

representations gives rise to one type of rigidity matrix. The 

geometric rules for constructing these matrices are derived. 

They have been known for mechanism only comprising 

revolute respectively spherical joints. Here a novel 

formulation of body-bar rigidity matrix that also applies in-

line and prismatic joints of planar mechanisms is reported. 

This allows, for the first time treating general planar 

mechanisms with the body-bar approach.Further the rigidity 

matrix of spatial mechanisms is derived when, at the 

moment, only spherical joints are assumed. It is shown how 

the rigidity matrices allow for mobility calculation. This 

yields the generic mobility, and when evaluated for a 

specific geometry the rigidity matrix yields the 

instantaneous mobility of a particular mechanism. 

A further significance of the two types of representation is 

that they enable computation of the generic mobility via a 

combinatorial method called the pebble game. This 

algorithm is explained in the paper. The fact that the pebble 

game always finds the correct generic mobility if applied to 

body-bar graphs has far reaching consequences for the 

mobility determination since it overcomes the limitation of 

the Chebyshev-Kutzbach-Grübler formula. 

It was further shown in this paper that the bar-joint is a 

special case of body-bar representation. 

 

Appendix 

A. Topics of projective geometry underlying this 
method 

The motion of a rigid body in the plane can be expressed as 

a rotation, with angular velocity , about its instantaneous 

center of motion. Denote with  1cc yxC   the 

homogenous coordinates of the instantaneous center of 

motion with Cartesian coordinates cc yx , .For later use 

introduce the abbreviation 
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The join operation on two points P and Q defines a line l 

from P to Q. Its projective coordinates are calculated as the 

minors as follows: 

 
                      (36) 

The homogeneous form of the projective coordinates of the 

line is: 
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(37) 

Where  is the angle between the line and the x-axis and d is 

the distance from the origin to the line. The first two 

coordinates of the triple define  the unit vector normal to the 

line. 

The velocity of a point P in homogenous coordinates can be 

expressed as 
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(38) 

where vP is the velocity of the point P,rPthe coordinate 

vector of point and Pn̂ is the normal unit vector in the 

direction of the velocity vP. Since the scalar product of the 

normal unit vector by the coordinate vector of point P is 

equal to the distance of the line through C and P from the 

origin, i.e.,  d = nP∙rP,  the distance d appears in equation 4.  

The triplet in equation (38) is termed in the literature as the 

motion of point P, and is denoted by MB(P) [32]. 
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